t2ex/bsd_source/lib/libc/src_bsd/complex/s_casin.c | bare source | permlink (0.00 seconds) |
1: /* $OpenBSD: s_casin.c,v 1.2 2011/07/08 19:25:31 martynas Exp $ */ 2: /* 3: * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> 4: * 5: * Permission to use, copy, modify, and distribute this software for any 6: * purpose with or without fee is hereby granted, provided that the above 7: * copyright notice and this permission notice appear in all copies. 8: * 9: * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10: * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11: * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12: * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13: * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14: * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15: * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16: */ 17: 18: /* LINTLIBRARY */ 19: 20: /* casin() 21: * 22: * Complex circular arc sine 23: * 24: * 25: * 26: * SYNOPSIS: 27: * 28: * double complex casin(); 29: * double complex z, w; 30: * 31: * w = casin (z); 32: * 33: * 34: * 35: * DESCRIPTION: 36: * 37: * Inverse complex sine: 38: * 39: * 2 40: * w = -i clog( iz + csqrt( 1 - z ) ). 41: * 42: * casin(z) = -i casinh(iz) 43: * 44: * ACCURACY: 45: * 46: * Relative error: 47: * arithmetic domain # trials peak rms 48: * DEC -10,+10 10100 2.1e-15 3.4e-16 49: * IEEE -10,+10 30000 2.2e-14 2.7e-15 50: * Larger relative error can be observed for z near zero. 51: * Also tested by csin(casin(z)) = z. 52: */ 53: 54: #include <sys/cdefs.h> 55: #include <complex.h> 56: #include <float.h> 57: #include <math.h> 58: 59: double complex 60: casin(double complex z) 61: { 62: double complex w; 63: static double complex ca, ct, zz, z2; 64: double x, y; 65: 66: x = creal (z); 67: y = cimag (z); 68: 69: if (y == 0.0) { 70: if (fabs(x) > 1.0) { 71: w = M_PI_2 + 0.0 * I; 72: /*mtherr ("casin", DOMAIN);*/ 73: } 74: else { 75: w = asin (x) + 0.0 * I; 76: } 77: return (w); 78: } 79: 80: /* Power series expansion */ 81: /* 82: b = cabs(z); 83: if( b < 0.125 ) { 84: z2.r = (x - y) * (x + y); 85: z2.i = 2.0 * x * y; 86: 87: cn = 1.0; 88: n = 1.0; 89: ca.r = x; 90: ca.i = y; 91: sum.r = x; 92: sum.i = y; 93: do { 94: ct.r = z2.r * ca.r - z2.i * ca.i; 95: ct.i = z2.r * ca.i + z2.i * ca.r; 96: ca.r = ct.r; 97: ca.i = ct.i; 98: 99: cn *= n; 100: n += 1.0; 101: cn /= n; 102: n += 1.0; 103: b = cn/n; 104: 105: ct.r *= b; 106: ct.i *= b; 107: sum.r += ct.r; 108: sum.i += ct.i; 109: b = fabs(ct.r) + fabs(ct.i); 110: } 111: while( b > MACHEP ); 112: w->r = sum.r; 113: w->i = sum.i; 114: return; 115: } 116: */ 117: 118: ca = x + y * I; 119: ct = ca * I; 120: /* sqrt( 1 - z*z) */ 121: /* cmul( &ca, &ca, &zz ) */ 122: /*x * x - y * y */ 123: zz = (x - y) * (x + y) + (2.0 * x * y) * I; 124: 125: zz = 1.0 - creal(zz) - cimag(zz) * I; 126: z2 = csqrt (zz); 127: 128: zz = ct + z2; 129: zz = clog (zz); 130: /* multiply by 1/i = -i */ 131: w = zz * (-1.0 * I); 132: return (w); 133: } 134: 135: #if LDBL_MANT_DIG == 53 136: #ifdef lint 137: /* PROTOLIB1 */ 138: long double complex casinl(long double complex); 139: #else /* lint */ 140: __weak_alias(casinl, casin); 141: #endif /* lint */ 142: #endif /* LDBL_MANT_DIG == 53 */