t2ex/bsd_source/lib/libc/src_bsd/complex/s_csqrtf.c | bare source | permlink (0.09 seconds) |
1: /* $OpenBSD: s_csqrtf.c,v 1.2 2010/07/18 18:42:26 guenther Exp $ */ 2: /* 3: * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> 4: * 5: * Permission to use, copy, modify, and distribute this software for any 6: * purpose with or without fee is hereby granted, provided that the above 7: * copyright notice and this permission notice appear in all copies. 8: * 9: * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10: * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11: * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12: * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13: * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14: * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15: * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16: */ 17: 18: /* csqrtf() 19: * 20: * Complex square root 21: * 22: * 23: * 24: * SYNOPSIS: 25: * 26: * float complex csqrtf(); 27: * float complex z, w; 28: * 29: * w = csqrtf( z ); 30: * 31: * 32: * 33: * DESCRIPTION: 34: * 35: * 36: * If z = x + iy, r = |z|, then 37: * 38: * 1/2 39: * Re w = [ (r + x)/2 ] , 40: * 41: * 1/2 42: * Im w = [ (r - x)/2 ] . 43: * 44: * Cancellation error in r-x or r+x is avoided by using the 45: * identity 2 Re w Im w = y. 46: * 47: * Note that -w is also a square root of z. The root chosen 48: * is always in the right half plane and Im w has the same sign as y. 49: * 50: * 51: * 52: * ACCURACY: 53: * 54: * 55: * Relative error: 56: * arithmetic domain # trials peak rms 57: * IEEE -10,+10 1,000,000 1.8e-7 3.5e-8 58: * 59: */ 60: 61: #include <complex.h> 62: #include <math.h> 63: 64: float complex 65: csqrtf(float complex z) 66: { 67: float complex w; 68: float x, y, r, t, scale; 69: 70: x = crealf(z); 71: y = cimagf(z); 72: 73: if(y == 0.0f) { 74: if (x < 0.0f) { 75: w = 0.0f + sqrtf(-x) * I; 76: return (w); 77: } 78: else if (x == 0.0f) { 79: return (0.0f + y * I); 80: } 81: else { 82: w = sqrtf(x) + y * I; 83: return (w); 84: } 85: } 86: 87: if (x == 0.0f) { 88: r = fabsf(y); 89: r = sqrtf(0.5f*r); 90: if(y > 0) 91: w = r + r * I; 92: else 93: w = r - r * I; 94: return (w); 95: } 96: 97: /* Rescale to avoid internal overflow or underflow. */ 98: if ((fabsf(x) > 4.0f) || (fabsf(y) > 4.0f)) { 99: x *= 0.25f; 100: y *= 0.25f; 101: scale = 2.0f; 102: } 103: else { 104: x *= 6.7108864e7f; /* 2^26 */ 105: y *= 6.7108864e7f; 106: scale = 1.220703125e-4f; /* 2^-13 */ 107: #if 0 108: x *= 4.0f; 109: y *= 4.0f; 110: scale = 0.5f; 111: #endif 112: } 113: w = x + y * I; 114: r = cabsf(w); 115: if (x > 0) { 116: t = sqrtf( 0.5f * r + 0.5f * x ); 117: r = scale * fabsf((0.5f * y) / t); 118: t *= scale; 119: } 120: else { 121: r = sqrtf(0.5f * r - 0.5f * x); 122: t = scale * fabsf((0.5f * y) / r); 123: r *= scale; 124: } 125: 126: if (y < 0) 127: w = t - r * I; 128: else 129: w = t + r * I; 130: return (w); 131: }