t2ex/bsd_source/lib/libc/src_bsd/math/e_asin.c | bare source | permlink (0.02 seconds) |
1: /* @(#)e_asin.c 5.1 93/09/24 */ 2: /* 3: * ==================================================== 4: * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5: * 6: * Developed at SunPro, a Sun Microsystems, Inc. business. 7: * Permission to use, copy, modify, and distribute this 8: * software is freely granted, provided that this notice 9: * is preserved. 10: * ==================================================== 11: */ 12: 13: /* asin(x) 14: * Method : 15: * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... 16: * we approximate asin(x) on [0,0.5] by 17: * asin(x) = x + x*x^2*R(x^2) 18: * where 19: * R(x^2) is a rational approximation of (asin(x)-x)/x^3 20: * and its Remes error is bounded by 21: * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) 22: * 23: * For x in [0.5,1] 24: * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) 25: * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; 26: * then for x>0.98 27: * asin(x) = pi/2 - 2*(s+s*z*R(z)) 28: * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) 29: * For x<=0.98, let pio4_hi = pio2_hi/2, then 30: * f = hi part of s; 31: * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) 32: * and 33: * asin(x) = pi/2 - 2*(s+s*z*R(z)) 34: * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) 35: * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) 36: * 37: * Special cases: 38: * if x is NaN, return x itself; 39: * if |x|>1, return NaN with invalid signal. 40: * 41: */ 42: 43: /* LINTLIBRARY */ 44: 45: #include <sys/cdefs.h> 46: #include <float.h> 47: #include <math.h> 48: 49: #include "math_private.h" 50: 51: static const double 52: one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 53: huge = 1.000e+300, 54: pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ 55: pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ 56: pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ 57: /* coefficient for R(x^2) */ 58: pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ 59: pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ 60: pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ 61: pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ 62: pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ 63: pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ 64: qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ 65: qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ 66: qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ 67: qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ 68: 69: double 70: asin(double x) 71: { 72: double t,w,p,q,c,r,s; 73: int32_t hx,ix; 74: GET_HIGH_WORD(hx,x); 75: ix = hx&0x7fffffff; 76: if(ix>= 0x3ff00000) { /* |x|>= 1 */ 77: u_int32_t lx; 78: GET_LOW_WORD(lx,x); 79: if(((ix-0x3ff00000)|lx)==0) 80: /* asin(1)=+-pi/2 with inexact */ 81: return x*pio2_hi+x*pio2_lo; 82: return (x-x)/(x-x); /* asin(|x|>1) is NaN */ 83: } else if (ix<0x3fe00000) { /* |x|<0.5 */ 84: if(ix<0x3e400000) { /* if |x| < 2**-27 */ 85: if(huge+x>one) return x;/* return x with inexact if x!=0*/ 86: } else 87: t = x*x; 88: p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); 89: q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); 90: w = p/q; 91: return x+x*w; 92: } 93: /* 1> |x|>= 0.5 */ 94: w = one-fabs(x); 95: t = w*0.5; 96: p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); 97: q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); 98: s = sqrt(t); 99: if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ 100: w = p/q; 101: t = pio2_hi-(2.0*(s+s*w)-pio2_lo); 102: } else { 103: w = s; 104: SET_LOW_WORD(w,0); 105: c = (t-w*w)/(s+w); 106: r = p/q; 107: p = 2.0*s*r-(pio2_lo-2.0*c); 108: q = pio4_hi-2.0*w; 109: t = pio4_hi-(p-q); 110: } 111: if(hx>0) return t; else return -t; 112: } 113: 114: #if LDBL_MANT_DIG == 53 115: #ifdef lint 116: /* PROTOLIB1 */ 117: long double asinl(long double); 118: #else /* lint */ 119: __weak_alias(asinl, asin); 120: #endif /* lint */ 121: #endif /* LDBL_MANT_DIG == 53 */