gonzui


Format: Advanced Search

t2ex/bsd_source/lib/libc/src_bsd/math/e_j0.cbare sourcepermlink (0.05 seconds)

Search this content:

    1: /* @(#)e_j0.c 5.1 93/09/24 */
    2: /*
    3:  * ====================================================
    4:  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
    5:  *
    6:  * Developed at SunPro, a Sun Microsystems, Inc. business.
    7:  * Permission to use, copy, modify, and distribute this
    8:  * software is freely granted, provided that this notice 
    9:  * is preserved.
   10:  * ====================================================
   11:  */
   12: 
   13: /* j0(x), y0(x)
   14:  * Bessel function of the first and second kinds of order zero.
   15:  * Method -- j0(x):
   16:  *      1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
   17:  *      2. Reduce x to |x| since j0(x)=j0(-x),  and
   18:  *         for x in (0,2)
   19:  *              j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
   20:  *         (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
   21:  *         for x in (2,inf)
   22:  *              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
   23:  *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
   24:  *         as follow:
   25:  *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
   26:  *                      = 1/sqrt(2) * (cos(x) + sin(x))
   27:  *              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
   28:  *                      = 1/sqrt(2) * (sin(x) - cos(x))
   29:  *         (To avoid cancellation, use
   30:  *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
   31:  *          to compute the worse one.)
   32:  *         
   33:  *      3 Special cases
   34:  *              j0(nan)= nan
   35:  *              j0(0) = 1
   36:  *              j0(inf) = 0
   37:  *              
   38:  * Method -- y0(x):
   39:  *      1. For x<2.
   40:  *         Since 
   41:  *              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
   42:  *         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
   43:  *         We use the following function to approximate y0,
   44:  *              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
   45:  *         where 
   46:  *              U(z) = u00 + u01*z + ... + u06*z^6
   47:  *              V(z) = 1  + v01*z + ... + v04*z^4
   48:  *         with absolute approximation error bounded by 2**-72.
   49:  *         Note: For tiny x, U/V = u0 and j0(x)~1, hence
   50:  *              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
   51:  *      2. For x>=2.
   52:  *              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
   53:  *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
   54:  *         by the method mentioned above.
   55:  *      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
   56:  */
   57: 
   58: #include "math.h"
   59: #include "math_private.h"
   60: 
   61: static double pzero(double), qzero(double);
   62: 
   63: static const double 
   64: huge    = 1e300,
   65: one     = 1.0,
   66: invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
   67: tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
   68:                 /* R0/S0 on [0, 2.00] */
   69: R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
   70: R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
   71: R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
   72: R05  = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
   73: S01  =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
   74: S02  =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
   75: S03  =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
   76: S04  =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
   77: 
   78: static const double zero = 0.0;
   79: 
   80: double
   81: j0(double x) 
   82: {
   83:         double z, s,c,ss,cc,r,u,v;
   84:         int32_t hx,ix;
   85: 
   86:         GET_HIGH_WORD(hx,x);
   87:         ix = hx&0x7fffffff;
   88:         if(ix>=0x7ff00000) return one/(x*x);
   89:         x = fabs(x);
   90:         if(ix >= 0x40000000) { /* |x| >= 2.0 */
   91:                 s = sin(x);
   92:                 c = cos(x);
   93:                 ss = s-c;
   94:                 cc = s+c;
   95:                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
   96:                     z = -cos(x+x);
   97:                     if ((s*c)<zero) cc = z/ss;
   98:                     else          ss = z/cc;
   99:                 }
  100:         /*
  101:          * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  102:          * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  103:          */
  104:                 if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
  105:                 else {
  106:                     u = pzero(x); v = qzero(x);
  107:                     z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
  108:                 }
  109:                 return z;
  110:         }
  111:         if(ix<0x3f200000) {    /* |x| < 2**-13 */
  112:             if(huge+x>one) {   /* raise inexact if x != 0 */
  113:                 if(ix<0x3e400000) return one;  /* |x|<2**-27 */
  114:                 else         return one - 0.25*x*x;
  115:             }
  116:         }
  117:         z = x*x;
  118:         r =  z*(R02+z*(R03+z*(R04+z*R05)));
  119:         s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
  120:         if(ix < 0x3FF00000) {  /* |x| < 1.00 */
  121:             return one + z*(-0.25+(r/s));
  122:         } else {
  123:             u = 0.5*x;
  124:             return((one+u)*(one-u)+z*(r/s));
  125:         }
  126: }
  127: 
  128: static const double
  129: u00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
  130: u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
  131: u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
  132: u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
  133: u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
  134: u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
  135: u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
  136: v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
  137: v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
  138: v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
  139: v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
  140: 
  141: double
  142: y0(double x) 
  143: {
  144:         double z, s,c,ss,cc,u,v;
  145:         int32_t hx,ix,lx;
  146: 
  147:         EXTRACT_WORDS(hx,lx,x);
  148:         ix = 0x7fffffff&hx;
  149:     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
  150:         if(ix>=0x7ff00000) return  one/(x+x*x); 
  151:         if((ix|lx)==0) return -one/zero;
  152:         if(hx<0) return zero/zero;
  153:         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
  154:         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
  155:          * where x0 = x-pi/4
  156:          *      Better formula:
  157:          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
  158:          *                      =  1/sqrt(2) * (sin(x) + cos(x))
  159:          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
  160:          *                      =  1/sqrt(2) * (sin(x) - cos(x))
  161:          * To avoid cancellation, use
  162:          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  163:          * to compute the worse one.
  164:          */
  165:                 s = sin(x);
  166:                 c = cos(x);
  167:                 ss = s-c;
  168:                 cc = s+c;
  169:         /*
  170:          * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  171:          * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  172:          */
  173:                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
  174:                     z = -cos(x+x);
  175:                     if ((s*c)<zero) cc = z/ss;
  176:                     else            ss = z/cc;
  177:                 }
  178:                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
  179:                 else {
  180:                     u = pzero(x); v = qzero(x);
  181:                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
  182:                 }
  183:                 return z;
  184:         }
  185:         if(ix<=0x3e400000) {   /* x < 2**-27 */
  186:             return(u00 + tpi*log(x));
  187:         }
  188:         z = x*x;
  189:         u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
  190:         v = one+z*(v01+z*(v02+z*(v03+z*v04)));
  191:         return(u/v + tpi*(j0(x)*log(x)));
  192: }
  193: 
  194: /* The asymptotic expansions of pzero is
  195:  *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,       where s = 1/x.
  196:  * For x >= 2, We approximate pzero by
  197:  *      pzero(x) = 1 + (R/S)
  198:  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
  199:  *        S = 1 + pS0*s^2 + ... + pS4*s^10
  200:  * and
  201:  *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
  202:  */
  203: static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  204:   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
  205:  -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
  206:  -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
  207:  -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
  208:  -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
  209:  -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
  210: };
  211: static const double pS8[5] = {
  212:   1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
  213:   3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
  214:   4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
  215:   1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
  216:   4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
  217: };
  218: 
  219: static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  220:  -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
  221:  -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
  222:  -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
  223:  -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
  224:  -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
  225:  -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
  226: };
  227: static const double pS5[5] = {
  228:   6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
  229:   1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
  230:   5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
  231:   9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
  232:   2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
  233: };
  234: 
  235: static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  236:  -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
  237:  -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
  238:  -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
  239:  -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
  240:  -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
  241:  -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
  242: };
  243: static const double pS3[5] = {
  244:   3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
  245:   3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
  246:   1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
  247:   1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
  248:   1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
  249: };
  250: 
  251: static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  252:  -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
  253:  -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
  254:  -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
  255:  -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
  256:  -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
  257:  -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
  258: };
  259: static const double pS2[5] = {
  260:   2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
  261:   1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
  262:   2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
  263:   1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
  264:   1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
  265: };
  266: 
  267: static double
  268: pzero(double x)
  269: {
  270:         const double *p,*q;
  271:         double z,r,s;
  272:         int32_t ix;
  273:         GET_HIGH_WORD(ix,x);
  274:         ix &= 0x7fffffff;
  275:         if(ix>=0x40200000)     {p = pR8; q= pS8;}
  276:         else if(ix>=0x40122E8B){p = pR5; q= pS5;}
  277:         else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
  278:         else if(ix>=0x40000000){p = pR2; q= pS2;}
  279:         z = one/(x*x);
  280:         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
  281:         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
  282:         return one+ r/s;
  283: }
  284:                 
  285: 
  286: /* For x >= 8, the asymptotic expansions of qzero is
  287:  *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
  288:  * We approximate pzero by
  289:  *      qzero(x) = s*(-1.25 + (R/S))
  290:  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
  291:  *        S = 1 + qS0*s^2 + ... + qS5*s^12
  292:  * and
  293:  *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
  294:  */
  295: static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  296:   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
  297:   7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
  298:   1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
  299:   5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
  300:   8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
  301:   3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
  302: };
  303: static const double qS8[6] = {
  304:   1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
  305:   8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
  306:   1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
  307:   8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
  308:   8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
  309:  -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
  310: };
  311: 
  312: static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  313:   1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
  314:   7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
  315:   5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
  316:   1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
  317:   1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
  318:   1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
  319: };
  320: static const double qS5[6] = {
  321:   8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
  322:   2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
  323:   1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
  324:   5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
  325:   3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
  326:  -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
  327: };
  328: 
  329: static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  330:   4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
  331:   7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
  332:   3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
  333:   4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
  334:   1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
  335:   1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
  336: };
  337: static const double qS3[6] = {
  338:   4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
  339:   7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
  340:   3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
  341:   6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
  342:   2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
  343:  -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
  344: };
  345: 
  346: static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  347:   1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
  348:   7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
  349:   1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
  350:   1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
  351:   3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
  352:   1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
  353: };
  354: static const double qS2[6] = {
  355:   3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
  356:   2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
  357:   8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
  358:   8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
  359:   2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
  360:  -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
  361: };
  362: 
  363: static double
  364: qzero(double x)
  365: {
  366:         const double *p,*q;
  367:         double s,r,z;
  368:         int32_t ix;
  369:         GET_HIGH_WORD(ix,x);
  370:         ix &= 0x7fffffff;
  371:         if(ix>=0x40200000)     {p = qR8; q= qS8;}
  372:         else if(ix>=0x40122E8B){p = qR5; q= qS5;}
  373:         else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
  374:         else if(ix>=0x40000000){p = qR2; q= qS2;}
  375:         z = one/(x*x);
  376:         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
  377:         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
  378:         return (-.125 + r/s)/x;
  379: }