t2ex/bsd_source/lib/libc/src_bsd/math/k_cos.c | bare source | permlink (0.01 seconds) |
1: /* @(#)k_cos.c 5.1 93/09/24 */ 2: /* 3: * ==================================================== 4: * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5: * 6: * Developed at SunPro, a Sun Microsystems, Inc. business. 7: * Permission to use, copy, modify, and distribute this 8: * software is freely granted, provided that this notice 9: * is preserved. 10: * ==================================================== 11: */ 12: 13: /* 14: * __kernel_cos( x, y ) 15: * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 16: * Input x is assumed to be bounded by ~pi/4 in magnitude. 17: * Input y is the tail of x. 18: * 19: * Algorithm 20: * 1. Since cos(-x) = cos(x), we need only to consider positive x. 21: * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. 22: * 3. cos(x) is approximated by a polynomial of degree 14 on 23: * [0,pi/4] 24: * 4 14 25: * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x 26: * where the Remes error is 27: * 28: * | 2 4 6 8 10 12 14 | -58 29: * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 30: * | | 31: * 32: * 4 6 8 10 12 14 33: * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then 34: * cos(x) = 1 - x*x/2 + r 35: * since cos(x+y) ~ cos(x) - sin(x)*y 36: * ~ cos(x) - x*y, 37: * a correction term is necessary in cos(x) and hence 38: * cos(x+y) = 1 - (x*x/2 - (r - x*y)) 39: * For better accuracy when x > 0.3, let qx = |x|/4 with 40: * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. 41: * Then 42: * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). 43: * Note that 1-qx and (x*x/2-qx) is EXACT here, and the 44: * magnitude of the latter is at least a quarter of x*x/2, 45: * thus, reducing the rounding error in the subtraction. 46: */ 47: 48: #include "math.h" 49: #include "math_private.h" 50: 51: static const double 52: one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 53: C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ 54: C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ 55: C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ 56: C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ 57: C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ 58: C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ 59: 60: double 61: __kernel_cos(double x, double y) 62: { 63: double a,hz,z,r,qx; 64: int32_t ix; 65: GET_HIGH_WORD(ix,x); 66: ix &= 0x7fffffff; /* ix = |x|'s high word*/ 67: if(ix<0x3e400000) { /* if x < 2**27 */ 68: if(((int)x)==0) return one; /* generate inexact */ 69: } 70: z = x*x; 71: r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); 72: if(ix < 0x3FD33333) /* if |x| < 0.3 */ 73: return one - (0.5*z - (z*r - x*y)); 74: else { 75: if(ix > 0x3fe90000) { /* x > 0.78125 */ 76: qx = 0.28125; 77: } else { 78: INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ 79: } 80: hz = 0.5*z-qx; 81: a = one-qx; 82: return a - (hz - (z*r-x*y)); 83: } 84: }