t2ex/bsd_source/lib/libc/src_bsd/math/s_atan.c | bare source | permlink (0.02 seconds) |
1: /* @(#)s_atan.c 5.1 93/09/24 */ 2: /* 3: * ==================================================== 4: * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5: * 6: * Developed at SunPro, a Sun Microsystems, Inc. business. 7: * Permission to use, copy, modify, and distribute this 8: * software is freely granted, provided that this notice 9: * is preserved. 10: * ==================================================== 11: */ 12: 13: /* atan(x) 14: * Method 15: * 1. Reduce x to positive by atan(x) = -atan(-x). 16: * 2. According to the integer k=4t+0.25 chopped, t=x, the argument 17: * is further reduced to one of the following intervals and the 18: * arctangent of t is evaluated by the corresponding formula: 19: * 20: * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) 21: * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) 22: * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) 23: * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) 24: * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) 25: * 26: * Constants: 27: * The hexadecimal values are the intended ones for the following 28: * constants. The decimal values may be used, provided that the 29: * compiler will convert from decimal to binary accurately enough 30: * to produce the hexadecimal values shown. 31: */ 32: 33: /* LINTLIBRARY */ 34: 35: #include <sys/cdefs.h> 36: #include <float.h> 37: #include <math.h> 38: 39: #include "math_private.h" 40: 41: static const double atanhi[] = { 42: 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 43: 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 44: 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 45: 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ 46: }; 47: 48: static const double atanlo[] = { 49: 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 50: 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 51: 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 52: 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ 53: }; 54: 55: static const double aT[] = { 56: 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ 57: -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 58: 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ 59: -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 60: 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ 61: -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 62: 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ 63: -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 64: 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ 65: -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 66: 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ 67: }; 68: 69: static const double 70: one = 1.0, 71: huge = 1.0e300; 72: 73: double 74: atan(double x) 75: { 76: double w,s1,s2,z; 77: int32_t ix,hx,id; 78: 79: GET_HIGH_WORD(hx,x); 80: ix = hx&0x7fffffff; 81: if(ix>=0x44100000) { /* if |x| >= 2^66 */ 82: u_int32_t low; 83: GET_LOW_WORD(low,x); 84: if(ix>0x7ff00000|| 85: (ix==0x7ff00000&&(low!=0))) 86: return x+x; /* NaN */ 87: if(hx>0) return atanhi[3]+atanlo[3]; 88: else return -atanhi[3]-atanlo[3]; 89: } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ 90: if (ix < 0x3e200000) { /* |x| < 2^-29 */ 91: if(huge+x>one) return x; /* raise inexact */ 92: } 93: id = -1; 94: } else { 95: x = fabs(x); 96: if (ix < 0x3ff30000) { /* |x| < 1.1875 */ 97: if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ 98: id = 0; x = (2.0*x-one)/(2.0+x); 99: } else { /* 11/16<=|x|< 19/16 */ 100: id = 1; x = (x-one)/(x+one); 101: } 102: } else { 103: if (ix < 0x40038000) { /* |x| < 2.4375 */ 104: id = 2; x = (x-1.5)/(one+1.5*x); 105: } else { /* 2.4375 <= |x| < 2^66 */ 106: id = 3; x = -1.0/x; 107: } 108: }} 109: /* end of argument reduction */ 110: z = x*x; 111: w = z*z; 112: /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ 113: s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); 114: s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); 115: if (id<0) return x - x*(s1+s2); 116: else { 117: z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); 118: return (hx<0)? -z:z; 119: } 120: } 121: 122: #if LDBL_MANT_DIG == 53 123: #ifdef lint 124: /* PROTOLIB1 */ 125: long double atanl(long double); 126: #else /* lint */ 127: __weak_alias(atanl, atan); 128: #endif /* lint */ 129: #endif /* LDBL_MANT_DIG == 53 */