gonzui


Format: Advanced Search

t2ex/bsd_source/lib/libc/src_bsd/math/s_log1p.cbare sourcepermlink (0.01 seconds)

Search this content:

    1: /* @(#)s_log1p.c 5.1 93/09/24 */
    2: /*
    3:  * ====================================================
    4:  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
    5:  *
    6:  * Developed at SunPro, a Sun Microsystems, Inc. business.
    7:  * Permission to use, copy, modify, and distribute this
    8:  * software is freely granted, provided that this notice 
    9:  * is preserved.
   10:  * ====================================================
   11:  */
   12: 
   13: /* LINTLIBRARY */
   14: 
   15: /* double log1p(double x)
   16:  *
   17:  * Method :                  
   18:  *   1. Argument Reduction: find k and f such that 
   19:  *                      1+x = 2^k * (1+f), 
   20:  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
   21:  *
   22:  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
   23:  *      may not be representable exactly. In that case, a correction
   24:  *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
   25:  *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
   26:  *      and add back the correction term c/u.
   27:  *      (Note: when x > 2**53, one can simply return log(x))
   28:  *
   29:  *   2. Approximation of log1p(f).
   30:  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
   31:  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
   32:  *                    = 2s + s*R
   33:  *      We use a special Remes algorithm on [0,0.1716] to generate 
   34:  *      a polynomial of degree 14 to approximate R The maximum error 
   35:  *      of this polynomial approximation is bounded by 2**-58.45. In
   36:  *      other words,
   37:  *                      2      4      6      8      10      12      14
   38:  *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
   39:  *      (the values of Lp1 to Lp7 are listed in the program)
   40:  *      and
   41:  *          |      2          14          |     -58.45
   42:  *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2 
   43:  *          |                             |
   44:  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
   45:  *      In order to guarantee error in log below 1ulp, we compute log
   46:  *      by
   47:  *              log1p(f) = f - (hfsq - s*(hfsq+R)).
   48:  *      
   49:  *      3. Finally, log1p(x) = k*ln2 + log1p(f).  
   50:  *                       = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
   51:  *         Here ln2 is split into two floating point number: 
   52:  *                      ln2_hi + ln2_lo,
   53:  *         where n*ln2_hi is always exact for |n| < 2000.
   54:  *
   55:  * Special cases:
   56:  *      log1p(x) is NaN with signal if x < -1 (including -INF) ; 
   57:  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
   58:  *      log1p(NaN) is that NaN with no signal.
   59:  *
   60:  * Accuracy:
   61:  *      according to an error analysis, the error is always less than
   62:  *      1 ulp (unit in the last place).
   63:  *
   64:  * Constants:
   65:  * The hexadecimal values are the intended ones for the following 
   66:  * constants. The decimal values may be used, provided that the 
   67:  * compiler will convert from decimal to binary accurately enough 
   68:  * to produce the hexadecimal values shown.
   69:  *
   70:  * Note: Assuming log() return accurate answer, the following
   71:  *       algorithm can be used to compute log1p(x) to within a few ULP:
   72:  *      
   73:  *              u = 1+x;
   74:  *              if(u==1.0) return x ; else
   75:  *                         return log(u)*(x/(u-1.0));
   76:  *
   77:  *       See HP-15C Advanced Functions Handbook, p.193.
   78:  */
   79: 
   80: #include <sys/cdefs.h>
   81: #include <float.h>
   82: #include <math.h>
   83: 
   84: #include "math_private.h"
   85: 
   86: static const double
   87: ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
   88: ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
   89: two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
   90: Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
   91: Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
   92: Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
   93: Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
   94: Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
   95: Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
   96: Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
   97: 
   98: static const double zero = 0.0;
   99: 
  100: double
  101: log1p(double x)
  102: {
  103:         double hfsq,f,c,s,z,R,u;
  104:         int32_t k,hx,hu,ax;
  105: 
  106:         GET_HIGH_WORD(hx,x);
  107:         ax = hx&0x7fffffff;
  108: 
  109:         k = 1;
  110:         if (hx < 0x3FDA827A) {                 /* x < 0.41422  */
  111:             if(ax>=0x3ff00000) {               /* x <= -1.0 */
  112:                 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
  113:                 else return (x-x)/(x-x);      /* log1p(x<-1)=NaN */
  114:             }
  115:             if(ax<0x3e200000) {                        /* |x| < 2**-29 */
  116:                 if(two54+x>zero                       /* raise inexact */
  117:                     &&ax<0x3c900000)           /* |x| < 2**-54 */
  118:                     return x;
  119:                 else
  120:                     return x - x*x*0.5;
  121:             }
  122:             if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
  123:                 k=0;f=x;hu=1;}        /* -0.2929<x<0.41422 */
  124:         } 
  125:         if (hx >= 0x7ff00000) return x+x;
  126:         if(k!=0) {
  127:             if(hx<0x43400000) {
  128:                 u  = 1.0+x; 
  129:                 GET_HIGH_WORD(hu,u);
  130:                 k  = (hu>>20)-1023;
  131:                 c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
  132:                 c /= u;
  133:             } else {
  134:                 u  = x;
  135:                 GET_HIGH_WORD(hu,u);
  136:                 k  = (hu>>20)-1023;
  137:                 c  = 0;
  138:             }
  139:             hu &= 0x000fffff;
  140:             if(hu<0x6a09e) {
  141:                 SET_HIGH_WORD(u,hu|0x3ff00000);        /* normalize u */
  142:             } else {
  143:                 k += 1; 
  144:                 SET_HIGH_WORD(u,hu|0x3fe00000);       /* normalize u/2 */
  145:                 hu = (0x00100000-hu)>>2;
  146:             }
  147:             f = u-1.0;
  148:         }
  149:         hfsq=0.5*f*f;
  150:         if(hu==0) {    /* |f| < 2**-20 */
  151:             if(f==zero) if(k==0) return zero;  
  152:                         else {c += k*ln2_lo; return k*ln2_hi+c;}
  153:             R = hfsq*(1.0-0.66666666666666666*f);
  154:             if(k==0) return f-R; else
  155:                     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
  156:         }
  157:         s = f/(2.0+f); 
  158:         z = s*s;
  159:         R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
  160:         if(k==0) return f-(hfsq-s*(hfsq+R)); else
  161:                  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
  162: }
  163: 
  164: #if     LDBL_MANT_DIG == 53
  165: #ifdef  lint
  166: /* PROTOLIB1 */
  167: long double log1pl(long double);
  168: #else   /* lint */
  169: __weak_alias(log1pl, log1p);
  170: #endif  /* lint */
  171: #endif  /* LDBL_MANT_DIG == 53 */